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Abstract—Slip estimation on planetary rovers is an active
field of research and the jury is still not out on which is the
best machine learning algorithm to classify slip without visual
odometry and just pro-prioceptive sensors. This report tries to
answer that question by testing out four major machine learning
models 1) Multi-Layer Perceptron 2)Decision Trees 3) Support
Vector Machine and 4) Random Forest Trees. Through a set
of procedural testing it is shown that Decision Trees perform
better than the Support Vector Machines contrary to [1]’s results
and observations. The software being used here are Weka and
LightSide.

I. INTRODUCTION

Calculating and correcting wheel slip in planetary rovers
is crucial to any unmanned mission. Wheel slip can cause
pre-planned trajectories to be violated during critical mission
procedures. Slip estimation using proprioception is a new
concept where-by relatively cheaper inertial sensors and
existing sensors related to drive mechanisms can be utilized
to infer indirectly slip instead of expensive instrumentation
clusters added onto the wheel to measure slip directly. One
way to do it is to use machine learning to predict slip. The
primary aim of this project is to effectively estimate and
classify wheel slip of a vehicle in a particular terrain. The
wheel slip can be classified into three classes namely: Low,
Moderate and High. It is important to classify slip instead of
just predicting the slip value because the traction controller
is designed according to the slip categories. The goal is to
perform Supervised Classification and Detection of rover slip
in different soil types and terrains.

Though in [1] they test supervised and unsupervised
models, there is no proper basis in the paper substantiating
that the model they selected was best and also they don’t show
and/or tune the models to obtain optimum performance. This
report attempts to establish a way to selecting an appropriate
machine learning model which can effectively classify slip
and some results pertaining to that. The procedure of model
selection is not an exact science and is heavily dependent on
the engineer’s understanding on the machine learning models
and also the intuition gained from observing the data.

II. RELATED WORK

Simple algorithms[2] are currently used on Martian Rovers
to detect embedding in soft soil. The logic behind it is that they
average the motor currents from the wheels over a 20 second
window and then checks it against a safe threshold which
is predetermined during lab test. It is currently used on the

Fall 2017

Curiosity Rover on the Martian surface and has successfully
stopped the rover from embedding in soft soil when crossing
the sandy ripples on surface of the planet[3]. The major
limitation of this approach is that it fails when climbing steep
inclines or slopes as the wheel current increases and maybe
exceed the manually set threshold without an embedding event
actually occurring, hence a lot of work has been done in
the field of using proprioception sensor data to classify slip
events on planetary rovers. Some used vibration sensor data
to train classifiers[3]][5], some Inertial Measurement Units
(IMU) like in [8]], some accelerometers to indirectly measure
disturbances in the rover chassis [6][7] and some even micro
phones mounted on the rover [9]. In this report the focus is
on the [1] whereby they the approach based on those previous
studies, where in particular, the features considered (i.e. IMU
linear acceleration, IMU vertical acceleration, IMU pitch rate,
and motor torque) are used for identifying various degrees of
slip and are not used for classifying the terrain itself.

III. APPROACH

[L] has tested both supervised and unsupervised methods,
but for the scope of this report the focus is on supervised
classifiers used to detect slip in different terrains and not only
one particular soil type. The algorithms used in [1]] are namely
Support Vector Machines(SVM) and Multi-Layer Perceptron
(MLP) and concluded that Support Vector Machines perform
the best. This report tries to reproduce their results and
also introduce new algorithms such as Decision Trees and
Random Forests to see how they fare against the original
algorithms used in [1]. It is important to note that from now
onwards SVM will be referred to as SMO (using the Weka
library where it uses an SVM with John Platt’s sequential
minimal optimization algorithm ) and Decision Trees as J48
(C4 algorithm).

The approach to tackle this problem of selecting the best
algorithm is as follows. Firstly the data analysis stage is
performed. It has four parts: data collection, data cleaning,
data set-up and data exploration. Then once the data has been
analyzed and prepared, many experiments are performed to
determine the baseline model, optimize the best performing
model out of the baseline model line up. The optimization
procedure includes feature selection (filter/statistical methods
and wrapper methods), once the good features are determined
parameter tuning is performed to fine tune the model to aug-
ment performance and then finally error analysis to see what



are problematic features are. These processes are discussed in
detail below.

IV. DATA ANALYSIS
A. Data Collection

Various physical experiments[l] were conducted using a
single-wheel testbed developed by the Robotic Mobility Group
(RMG) at MIT. The system limited the wheels movement
primarily to its longitudinal direction.The wheel and carriage
are driven at different rates to impose variable slip ratios.
The wheel in use for the experimentation was a Mars Science
Laboratory (MSL) flight spare wheel. The sensing system of
the testbed consists of: an IMU (MicroStrain, 3DM-GX?2), a
torque sensor (Futek, FSH03207), and a displacement sensor
(Micro-epsilon, MK88). Data was recorded at 100 [Hz] in an
external computer. The soil used during testing was a Mars
regolith simulant developed at MIT to replicate conditions
being experienced by the MSL rover on Mars. Numerous
experiments were carried out inducing wheel slip under var-
ious operation conditions (i.e., ripple geometries, wheel and
pulley velocity rates) and loading conditions of the carriage
pulley. These conditions included small soil ripples in the
path of the wheel to create soil compaction resistance in a
manner similar to what is currently being experienced on Mars
by MSL. A video with this experiment is available online
at: http://web.mit.edu/mobility/videos/embeddingMITPIL.mp4.
For ground-truth purposes, slip was estimated measuring the
angular velocity of the wheel and the angular velocity of the
carriage pulley.

B. Data Cleaning

The outliers were removed,from the data collection stage
above, for example when slip had values out of the range [0,
100]. From the data collected four features were selected. The
first feature is the absolute value of the wheel torque:

giq = abs(T;)

where T; is the ¢ — th instance of motor torque. During
normal outdoor driving, terrain unevenness leads to variations
in wheel torque. This value is increased when the robot
is experiencing moderate or high slip. The rest of features
collected by the IMU sensor. These features were chosen as
the variance of the N, element groupings i of the linear
acceleration (x-axis), x; n,, . The degree of pitch (y-axis), ; n,,
and the vertical acceleration (z-axis), z; n, like in [[11]. The
sliding variance is explained filter used for the IMU derived
features are explained in [1]].

C. Data Set-Up

The data cleaning and data collection was all done in [[L].
This MIT Dataset needs to be setup. The data was split up
into three distinct sets with respective percentages of original
dataset:

Development Set: 20%
Cross Validation Set: 60%
Test Set: 20%.

Before splitting the dataset all the instances were random-
ized. The qualitative analysis is performed on the development
dataset and iterative development on the cross validation
dataset. The error analysis is also performed on the devel-
opment data set and final testing is done by training on the
cross validation set and testing on test set as unseen data. The
development set is utilized to gain intuition about the data and
features in a better manner. Parameters are tuned and also the
error analysis performed on the development set which is later
validated/tested on the cross validation set.

D. Data Exploration

It is tempting to use powerful machine learning and
statistical models to find a solution to a problem, but before
applying any learning techniques to solve a problem statement
it is very important to understand and summarize a dataset
without making any explicit assumptions about its contents.
It is a crucial step to take before diving into machine learning
or statistical modeling because it provides the context needed
to develop an appropriate model for the problem at hand and
to correctly interpret its results. To aid our understanding
about the dataset it is important to use quantitative and visual
inspection methods vis-a-vis do Exploratory Data Analysis
(EDA). We need this stage to understand the data we are
handling and what type of models will be appropriate for
this type of classification problem. In our EDA we have used
histograms to better see the distribution and nature of the data.
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Fig. 1. Histograms of MIT dataset.

In Figure 1. we can see that except Motor Torque all the
other features in the MIT dataset has a decaying exponential
distribution, where-as Motor Torque has Gaussian distribution.
This strongly tells us that a Gaussian based learner wouldn’t be
able to effectively learn the representations in the dataset.The
data representations are not at all Gaussian and we can also
observe major class imbalances, that is the majority of slip
cases are Low Slip events. This leads us to two conclusions.

1) Gaussian based classifier wouldn’t be effective in our

application.

2) This might give us false sense of good performance,

hence when we test the models and compare per-


http://web.mit.edu/mobility/videos/embeddingMIT PI.mp4.

formances we utilize Cohen’s Kappa Statistic paired
with Accuracy and Classification Accuracy in terms of
percentage of correctly classified to determine a true
prediction rate of the classifiers. Cohen’s Kappa statistic
takes into account how much agreement can be expected
by chances. We use this instead of ROC or F1 score as
ROC is only good when we have to check probability
that a random positive example will be ranked above a
random negative example and F1 score is more suited
for test-mining related classifiers where we have high-
dimensional data.

V. EXPERIMENTS
A. Baseline Performance

An initial intuition was obtained by running six machine
learning models with their default settings in Weka. The
models are:

1) ZeroR

2) OneR

3) MLP

4) 148

5) Random Forest

6) SMO
The ZeroR model or the Majority predictor and OneR model
were utilized to see if this problem was actually learnable
and if it is actually worth to go through all the process
of selecting a machine learning model. The results of the
baseline performance run tabulated in Table I show that the
problem is learnable and worth solving as the performance
of the ZeroR model is the least i.e. just predicting the
majority class is worse than then decision rule learned by
other models. This how it should be ZeroR’s performance
should be the worst if the problem is worth solving. There
is another observation that can be made from the baseline
performances which reinforces the mathematical relationship
between wheel torque and slip. When the OneR model is run,
the minimum-error feature used is Motor Torque which is in
line with our finding in Data Analysis section.

The base-line performance for the four algorithms are
shown in Table I.

TABLE I
LEARNING MODEL SELECTION

[ Model [[ Kappa Statistic Score | % Correct Classified |
ZeroR 0 45.5
OneR 0.6081 75
MLP 0.7144 82
J48 0.7267 82.5
Random Forest 0.6914 80.5
SMO 0.598 75

From Table I it is evident that MLP and J48 are better than
SMO(in disagreement with [1]] which is interesting and needs
further analysis to why such a huge difference as compared
to 99% classification accuracy in [1]], we only get 75% even

with same configuration of the model.) and Random Forest.
Out of MLP and J48, J48 performs the best and hence is
chosen as the selected model and will be optimized further
for better performance. The Kappa Statistic all the models
except for ZeroR and OneR are > 0.61 and hence substantial
according the Kappa Statistic Scoring scheme (0.61 to 0.80 is
substantial).

B. Optimization

In the optimization step the J48 is carried over from the
results obtained in the baseline performance test and tuned.
The first step is to select appropriate features for the problem
at hand, so the feature selection is performed.

1) Feature Selection:

« Filter Method

First, a statistical model independent approach is taken
to select the best features or remove the insignificant
ones. Namely two statistical scoring metrics are used:
Pearson’s Scoring and OneR Classifier which uses
information gain inherently. The Pearson’s Scoring
measures the correlation between the ground truth class
labels and the individual features. The OneR classifier
utilizes information gain to rank the features according
their influence in decision making. The attribute selection
in Weka is utilized to obtain the scoring and ranking of
the features. The results are shown in Table II & III.

Pearson’s Scoring (Correlation): Referring to Table
II, with a threshold of 0.2, all the four features appear
to be relevant to the problem at hand i.e. the features
have correlation to the classes for slip prediction. It is
important to note that IMU acceleration reading along
the Y-axis, i.e. the sideways motion of the wheel is the
least relevant whereas Motor Torque is the most relevant
with the IMU pitch angle coming in a close second.
This is in agreement with the mechanics of wheel slip
occurrence, i.e. when wheel slip occurs, the torque
profile of the motor will change and so will the pitch
angle of the wheel.

TABLE 11
FEATURE SELECTION USING PEARSON’S SCORING

[ Ranked Score || Feature | Feature Label |
0.49 1 Motor Torque
0.484 3 IMU-ang-X
0.456 2 IMU-acc-Z
0.32 4 IMU-acc-Y

OneR Classifier: Same result as the Pearsons correlation
coefficient , which reinforces our understanding of the
problem at hand.
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and the results also highlight the fact that all the
features are important for decision making and none of
them should be eliminated from a statistical point of view.

o Wrapper Method

x
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Fig. 2. Percent Correctly Classified of J48 by varying minimum samples per
leaf.

Second, a wrapper method is utilized where by different

combinations of the features are trained and tested with
the particular model, here J48, and the results are obtained
as to which feature combination gives the best perfor-
mance. This was done using Weka. The results show \
that all the four original features are well suited for this

problem and none of them are problematic.

To summarize the feature selection stage, all the four features
are desirable and none of them are problematic. The impor-
tance of these features is analyzed further in the error analysis
stage and the possibility of new features discussed.

2) Parameter Tuning: In this stage parameter tuning is
performed on the model and features that are selected from
the baseline test and feature selection. J48 is the model with a
Kappa Statistic of 0.726 and classification accuracy of 82.5 %
with all four features is tuned. The parameter being tuned was
chosen to be the minimum number of samples per leaf. Other
parameters like tree depth and random splits per node were
tested but none of them showed any variation in accuracy.
The default in Weka is 2 minimum samples per leaf, hence
a parameter search was performed ranging from 1 minimum
sample per leaf upto 10 minimum samples per leaf. The
results of the tuning are shown in Fig 2 and Fig 3 where
the Classification Accuracy and Kappa Statistic is plotted as
a function of minimum samples per leaf. The best parameter
settings seem to be with minimum samples per leaf set to 3
with an Classification Accuracy of 81.7% and Kappa Statistic
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Fig. 3. Kappa Statistic of J48 by varying minimum samples per leaf.

3) Error Analysis: Error analysis is utilized to find out fun-
damental faults with the features so that they can be rectified.
Error analysis in conjunction with feature selection provide
an deterministic way to know for sure that the features are
suitable for the problem at hand. The scope of representation
of the data at hand is studied. Using LightSide, the dataset
was loaded and ran using J48 algorithm via the Weka plugin.

A study of the most misclassified data points was done using
the metrics in LightSide namely:

o Average Cell Value

« Horizontal Absolute Difference: dissimilarity between the
feature

o Vertical Absolute Difference: similarity between the fea-
tures

Identifying the features with a low horizontal-absolute-

of 0.71 after being validated using the cross-validation set and difference and a high absolute vertical difference so that
tested on testing set.

they can be eliminated or rectified. By visually inspecting



the confusion matrices and selecting the quadrants that had
got misclassified, it was apparent that most mis-classification
occurs with extremely low slip and extremely high slip. It
can be inferred that this occurs because the model is trying
to classify them as embedding of the wheel. Embedding of
the wheel occurs when the wheel has displaced enough soil
so that it has surrounded it now and cannot move any more.
It is important to understand what happens during embedding
to actually interpret the error analysis correctly. Just before
embedding it is high slip or near 100% slip ratio i.e. the
wheel keeps slipping without the rover moving and then once
embedding occurs the slip value goes to very low slip or 0
as the rover is completely immobilized and dug itself into
the sand. Now this is actually a very good thing from the
perspective of learning capability of the model as it has the
inherent ability to detect embedding of the rover wheel.

The results of the error analysis reinforce the fact that all the
four features originally in the dataset are well suited for this
problem. The mis-classification of very high slip and very low
slip is an artifact of the model not because of the features but
because of the class labels as none of the class labels account
for embedding and the cases of embedding are removed by [1]]
during the data cleaning process. Thus this misclassification
can be corrected by introducing another class for embedding
and including the data points from embedding into the data
set instead of deleting those instances.

VI. RESULTS & CONCLUSION

It can be decisively said that Decision Trees or J48 in this

case is the better than SMO, MLP and Random Forest contra-
dicting the findings from [[1]. All the features are retained and
none of them are identified as problematic through feature
selection and error analysis. The error analysis stage gives
insight into the misclassification issue leading to a conclusion
that introducing a new class for embedding and not omitting
embedding events from the data sets is a way increase the
model’s performance instead of removing features.
The final model chosen is the baseline model with minimum
samples per leaf as 2 instead of minimum samples per leaf
as 3, even though that’s the result parameter tuning gave us.
This is because when significance test was run comparing
the baseline J48 with the optimally tuned J48 the result was
insignificant. Hence the baseline model of J48 with default
settings in Weka is chosen as the best model for this problem.
The performance of the selected J48 model on unseen data has
a classification accuracy of 84% and kappa statistic of 0.73.

VII. FUTURE WORK

Some investigations related to the slip class boundaries, i.e.
how the different classes of slip are split and what would
be the optimum boundaries for differentiating different slip
zones from a data perspective is a worthy endeavor, specially
including the cases for embedding of the wheel. Also the
use of online learning techniques like Reinforcement Learning
and Inverse Reinforcement Learning instead of Supervised
Learning based Classifiers is a desirable research direction

in the field of traction control as these online models can
learn new terrains efficiently in absence of prior supervised
and label training data and can be integrated directly with the
vehicle architecture without a high-level supervisory traction
controller.
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